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A new finite element formulation for both compressible
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SUMMARY

A new finite element formulation designed for both compressible and nearly incompressible viscous flows
is presented. The formulation combines conservative and non-conservative dependent variables, namely,
the mass–velocity (density�velocity), internal energy and pressure. The central feature of the method is
the derivation of a discretized equation for pressure, where pressure contributions arising from the mass,
momentum and energy balances are taken implicitly in the time discretization. The method is applied to
the analysis of laminar flows governed by the Navier–Stokes equations in both compressible and nearly
incompressible regimes. Numerical examples, covering a wide range of Mach number, demonstrate the
robustness and versatility of the new method. Copyright © 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Most numerical methods for the analysis of compressible fluid dynamics present difficulties
when applied to low-speed (nearly incompressible) flow problems. The difficulties originate
from the fast propagation of pressure waves, as flow conditions approach the incompressible
limit. In such cases, the accurate representation of pressure transients requires the use of
extremely small time steps, which are unaffordable in practical applications. Conversely, the
use of time steps larger than the typical pressure time scale results in errors that may lead to
numerical instability. In particular, if an explicit time approximation of pressure is adopted—a
usual choice in algorithms for high-speed compressible flows—such errors grow during the
computation and stability is rapidly lost.

Nearly incompressible flows, i.e. flows characterized by very small Mach number, are
usually approximated as fully incompressible. Thus, compressibility effects are eliminated from
the start, at the modelling level, prior to considering any particular discretization method. This
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is achieved by a change of the physical and mathematical model, where the original mass
conservation law and state equation are replaced by the incompressibility constraint, requir-
ing the velocity field to be divergence-free. In such a context, pressure is no longer a
thermodynamic property related to density through a state equation. Most importantly, the
pressure hyperbolic character and the associated wave-like pressure propagation disappear
from the model. Instead, in a fully incompressible flow, pressure takes an elliptic character:
it must be determined from the momentum balance and boundary conditions in such a way
that the incompressibility constraint (9 ·u=0) is enforced at all times.

Because of these distinct mathematical characters, i.e. hyperbolic versus elliptic pressure
behaviour, it is not surprising that methods for the discretization of compressible and
incompressible flows have developed independently and, to some extent, apart. The compu-
tational fluid dynamics (CFD) literature reflects this dichotomy and most papers are
devoted specifically to either compressible or incompressible fluid flow applications. Only
recently has the literature clearly indicated the interest in numerical schemes appropriate to
all speed regimes. The development of methods for a wide range of Mach numbers is
welcome to the analysis of many flow problems involving simultaneously both the com-
pressible and the nearly incompressible behaviour. In fact, even in the high-speed compress-
ible flows of the aerospace industry, the nearly incompressible behaviour is present near
solid walls and leading edges.

Different approaches have been pursued in the development of methods for all-speed
fluid flows. Karki and Patankar [1] and Maliska and Silva [2] introduced finite volume
pressure based methods obtained through the extension of schemes originally developed for
incompressible problems. The works of Chen and Pletcher [3] and Azevedo and Martins [4]
are examples of classical finite volume compressible methods modified in order to deal with
incompressible flows. In the finite element context, Zienkiewicz and Codina [5] used frac-
tional steps and characteristic Galerkin approximations to derive their all-speed formula-
tion.

In this paper, a unified treatment for the analysis of both compressible and nearly
incompressible flows is presented. Although the discussion has been restricted to laminar
flows governed by the Navier–Stokes equations, the methodology proposed can be readily
extended to accommodate the Reynolds-averaged equations and turbulence closure models.
The formulation is written combining conservative and non-conservative dependent vari-
ables. These are the mass–velocity vector (density�velocity), internal energy and pressure.
Linear finite elements are used to approximate the field variables.

An important feature of the method is the implicit time discretization of the mass
balance and of the pressure terms appearing in the momentum and energy equations.
Petrov–Galerkin weighting functions, derived from a least-squares procedure, are employed
in the momentum- and energy-weighted residual statements. The resulting formulation auto-
matically introduces streamline upwinding [6] and pressure stabilizing terms. Moreover, the
method retains stability, despite ignoring the short time scales associated with the fast
pressure transients of nearly incompressible flows.

Numerical examples are presented. Steady and unsteady flow simulations, covering a
wide range of Mach numbers, demonstrate the robustness and versatility of the new
method.
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2. THE CONTINUUM MODEL

We present here the continuum model used in our description of compressible viscous flows.
The problem is defined on the open bounded domain V, with boundary G, contained in the
nsd-dimensional Euclidean space. The governing equations are written using the summation
convention for a=1, . . . , nsd and b=1, . . . , nsd, in Cartesian co-ordinates, as
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Constituti6e equations for 6iscous stress and heat flux
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Thermodynamics (ideal gas)

p= (g−1)re, (6)

e=c6T, (7)

g=
cp

c6
. (8)

In the above equations ua, p, e, r and T denote the velocity, pressure, internal energy,
density and temperature fields respectively. The mass–velocity (density�velocity) is repre-
sented by Ga=rua. The gravity field is ga. The symbols m, k, c6 and cp represent the fluid
properties of viscosity, thermal conductivity, specific heat at constant volume and specific heat
at constant pressure respectively.
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Note that using the mass balance (1) and the state equation (6), the energy equation (3) can
be alternatively written as
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The above form of the energy equation will be also used in the derivations presented in the
next section.

2.1. Using the state equation to eliminate density

The governing equations can be recast as follows, where density is eliminated from the mass
balance and the gravity field potential 8 is introduced:
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or, corresponding to Equation (9),
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The modified pressure p %, the gravity field potential 8 and the thermodynamic properties a

and b are given by

p %=p−p0+r8, (14)

8= −g ·x= −gbxb, (15)
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and p0 is the reference pressure for the problem at hand.

2.2. Go6erning equations in non-dimensional form

Let us define non-dimensional variables, denoted with an asterisk *, which are related to the
original dimensional variables according to
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where the subscript zero ‘0’ indicates reference values and L is the reference length. In terms
of the non-dimensional variables, the governing equations become
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or, corresponding to Equation (13)
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where
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and the non-dimensional groups of Reynolds, Froude, Prandtl and Eckert are given respec-
tively by
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Remarks
(1) In aeronautical applications it is usual to parameterize problems using the Mach number
M rather than the Eckert number Ec. For ideal gases, the relationship between these
non-dimensional groups is

Ec= (g−1)M2. (30)

(2) In free convection applications, problem data usually include a reference temperature
difference Du rather than a reference velocity u0. However, it is a simple matter to define a
reference velocity u0 using the given Du and the fluid volumetric thermal expansion coefficient
b6. Indeed, if the reference velocity u0 is chosen as u0= (b6Du �g�L)1/2, then the squared
Reynolds number becomes the Grashof number, Gr=Re2=r0

2�g�b6DuL3/m0
2, which is a

non-dimensional group usually employed to parameterize free convection problems.

In the remainder of this work we shall deal exclusively with the non-dimensionalized
equations and the asterisk *—used to indicate non-dimensional quantities—will be dropped.
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3. THE DISCRETIZATION AND SOLUTION SCHEMES

Linear Lagrangian finite elements are employed to represent the mass–velocity, pressure and
internal energy fields. The central feature of the method is the derivation of a discretized
equation for pressure, where pressure contributions arising from the mass, momentum and
energy balances are taken implicitly in the time discretization. The Galerkin method is used to
obtain the discretized pressure equation, while a Petrov–Galerkin/least-squares based ap-
proach is used in the derivation of the discretized equations for mass–velocity and internal
energy.

The problem is solved using a segregated solution procedure. Once the pressure field is
found, the algorithm proceeds with the computation of the mass–velocity and internal energy
fields. The cyclic update of pressure, mass–velocity and internal energy requires the solution
of symmetric systems of equations. This is accomplished with preconditioned conjugate
gradient solvers, suitable for parallel and vector implementation on supercomputers [7].

3.1. The equation for pressure

Let us consider the following time discretization of the mass balance (19),
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and the fractional steps approximation of the energy balance (21), represented by
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In the above equations, the superscripts n and n+ 1 denote the time level and Dt is the time
step. Here, the parameters u1 and u2=1−u1 control the implicitness in the time discretization
of the convective term (explicit for u1=0 and implicit for u1=1). Unless otherwise stated, we
shall employ u1=0.5 in our computations.

The mass–velocity, pressure and internal energy fields at time level k are interpolated as
G. a

k=NjGaj
k , p̂ k=Njpj

k and ê k=Njej
k respectively, where Nj represents the linear Lagrangian

shape functions and Gaj
k , pj

k and e j
k are the corresponding nodal values at time level k.

When splitting the energy balance into Equations (32) and (33), we have isolated the term
representing the compressible contribution in Equation (33). Equation (32), on the other hand,
retains the remaining terms, typical of incompressible applications.

From Equations (31) and (33), we obtain
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Using the Galerkin method, we obtain the following weighted residual approximation of
Equation (34):
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In the above equation, the weighting functions Ni are the shape functions associated with the
free nodal pressure variables pi

n+1. The density rn+1/2 is computed as follows, using a Taylor
series expansion from time level n and the mass balance,
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while rn, an and bn are evaluated as constants within each finite element (they are obtained
from the internal energy and pressure defined at the element baricentre).

Returning to Equation (35), let us now integrate by parts the mass–velocity divergence term
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where na denotes the outward normal vector at the boundary G. Using a Taylor series in time
and approximating the momentum balance (20), the above equation yields
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Note that the pressure gradient term, which arises from the momentum balance, is
approximated with a fully implicit time discretization. Using integration by parts again,
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Boundary conditions for pressure and mass flux are prescribed on non-overlapping parts of
the boundary Gp and GG, such that Gp@GG=G and GpSGG=¥, as

p= p̄ on Gp, (40)

Gana=G( on GG. (41)

It is important to recall that the weighting functions, Ni, are associated with the free pressure
nodal values and thus vanish on the Gp part of the boundary, where pressure is prescribed.
Thus, after considering the above boundary conditions, Equation (39) yields
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The boundary term in the above equation disappears if the specified mass flux on GG does not
vary in time. In particular, it vanishes at solid walls or when steady state solutions are sought.

Introducing Equation (42) back into the pressure equation (35), we obtain
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û b

n (G. a
n

(xb

G. a
n� dV+

&
V

Ni
�gEc

Fr2 8+
1−g

rn+1/2

�
bn (û a
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The pressure equation (43) involves pressure terms arising from the mass, momentum
and energy (compressible part) equations. Most importantly, these pressure terms are
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approximated using a fully implicit time discretization, which introduces numerical damping of
pressure errors. This permits retaining stability in the pressure computation, despite ignoring
the short time scales associated to the fast pressure waves that characterize nearly incompress-
ible flows.

It is important to note that before Equation (43) can be solved, one has to determine the
internal energy field ê % corresponding to the solution of Equation (32). This task, which can be
regarded as a pre-processing for the pressure update, is described next.

The local residual of the incompressible part of the energy equation (32) is written as
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The summation of squared residuals on the domain is given by
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For the time being we do not specify any particular spatial discretization for q̂b and t̂ab and
treat the viscous and heat flux contributions as source terms at time level n.

Minimizing the squared residuals S with respect to the free nodal values e %i and choosing
l=Dt/r̂n+1/2, we obtain the following Petrov–Galerkin weighted residual statement,
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Note that the weighting function in Equation (46) has the same structure of the streamline
upwind Petrov–Galerkin (SUPG) weighting function [6], but depends on the time step and on
the degree of implicitness used. For u1=0.5, an appropriate amount of streamline upwinding
is introduced if one adjusts the time step according to the so-called optimal upwind parameter
[6]. We shall return to this point in Section 3.4, when discussing the local time stepping
procedure adopted in this work.

Internal energy and heat flux boundary conditions are prescribed on the boundary partitions
Ge and Gq, such that Ge@Gq=G and Ge@Gq=¥, as

e= ē on Ge, (47)

qbnb= q̄ on Gq. (48)

Integrating by parts the Galerkin heat flux divergence term in Equation (46) and considering
the above boundary conditions, we obtain
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At this point, we have to introduce the spatial discretization of the viscous and heat flux terms
into Equation (49). Based on Equations (25) and (26), these quantities are expressed in terms
of the discretized velocity and temperature fields as

t̂ab
n = −

2
3

m
�(û c

n

(xc

�
dab+m

�(û a
n

(xb

+
(û b

n

(xa

�
, (50)

q̂ b
n= −k

(T. n

(xb

, (51)

where û a
n=Njuaj

n and T. n=NjTj
n are interpolated using the linear Lagrangian shape functions

Nj and the nodal values for velocity and temperature,

Tj
n=e j

n, (52)

uaj
n =

Gaj
n

r j
n . (53)

In the above equation, r j
n denotes the density nodal values. These are obtained through the

state equation (27) using the corresponding nodal values for internal energy and pressure.
It is important to remark that with the above approximations for heat flux and viscous

stress, the equivalence between Equation (49) and the least-squares method is lost. This is due
to the occurrence, in Equations (44) and (45), of second-order derivatives of temperature
(internal energy), which can be represented inside the finite elements, but not across element
interfaces. In the formulation adopted here, the heat flux contributions to Equation (49) are
evaluated on element interiors, following a procedure that has become standard in the context
of Petrov–Galerkin formulations [8].

Note that the implementation of the least-squares method would require either recasting the
problem in terms of first-order spatial differentials, with the introduction of new dependent
variables, or employing C1 shape functions. Although no longer equivalent to the least-squares
method, the present Petrov–Galerkin formulation inherits from the former the important
mathematical properties of symmetry and positi6e definiteness, while retaining the use of simple
C0 shape functions. It is also worth stressing that the formulation automatically introduces
streamline upwinding [6], a feature of foremost importance as far as the simulation of
convection dominated flows is concerned.
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Once the internal energy ê % is determined, the strongly implicit pressure equation (43) can be
solved for p̂ n+1. The next stage is the computation of the new mass–velocity G. a

n+1 and the
new internal energy ê n+1. Again, Petrov–Galerkin weighted residual statements are employed
in the discretization, as described in the following sections.

3.2. Mass–6elocity update

The weighted residual statement used for the mass–velocity update is obtained using the same
rationale employed in Section 3.1, when deriving the Petrov–Galerkin approximation of
Equation (32). Here, the local residual of the momentum equation (20) is

r̂a=
G. a

n+1−G. a
n

Dt
+ û b
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, (54)

where G. a
n+u1=u1G. a

n+1+u2G. a
n.

The summation of squared residuals on the domain is given by

S=
&

V
lr̂ar̂a dV. (55)

Minimizing the squared residuals with respect to the mass–velocity degrees of freedom Ga
n+1

and choosing l=Dt, we obtain the following weighted residual statement
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n (G. a

n+1

(xb

n
dV

=
&

V

��
1+u1Dt

(û c
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(û b
n

(xb

�
G. a

n−u2Dt ûb
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Mass–velocity and traction boundary conditions are prescribed on the boundary partitions
GGa

and Gta
, such that GGa

@Gta
=G and GGa

@Gta
=¥, as

Ga=G( a on GGa
, (57)

�
−pdab+

1
Re
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�
nb= t( a on Gta

, (58)
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where dab is the Kronecker delta. Using Green’s identity on Equation (56) and considering the
above boundary conditions, we obtain
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(59)

The above equation is solved for each mass–velocity component in turn (G. a
n+1, for a=1, nsd),

immediately after the pressure field has been determined.

3.3. Internal energy update

In Section 3.1, we have considered the energy balance in the form of Equation (21) rather than
the form shown in Equation (22). This permitted including the compressible contribution to
the energy balance (21) into the equation for pressure, as indicated by Equations (31)–(34). In
order to update the internal energy field, though, we prefer to use the energy balance in the
form of Equation (22), which allows the direct utilization of the newly computed mass–
velocity Gn+1.

The Petrov–Galerkin/least-squares based approach is also used to derive the scheme for
energy update. Here, the local residual of the energy equation (22) is written as
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+ û b

n (ê
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(60)

and the summation of squared residuals on the domain is given by

S=
&

V
lr̂er̂e dV. (61)
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Minimizing the squared residuals S with respect to the free nodal values e i
n+1 and

considering the boundary conditions given by Equations (47) and (48), we obtain
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ê n+1+u1Dt ûb
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n (ê
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3.4. Local time stepping

The choice of time step is of foremost importance for the accuracy and stability of the method.
Note that the Petrov–Galerkin weightings, and the associated stabilization terms, are parame-
terized by the time step. The stabilization terms can be also interpreted as artificial dissipation.
Here, though, such terms arise naturally from the derivation, rather than being added a
posteriori.

For linear elements, a proper amount of streamline upwinding is introduced in the momen-
tum balance choosing the time step as

Dt=
�

coth
�CRe

2
� 2

CRe

n he

un , (63)

where un is the velocity modulus and he is the characteristic element size (the square root of
the element area). The element Reynolds number CRe and the problem Reynolds number Re
are related as follows:

CRe=
runhe

m
Re. (64)

It is important to recall that the variables and governing equations have been non-
dimensionalized. Thus, the time step, velocity, physical properties and element size in Equa-
tions (63) and (64) are non-dimensional quantities. The corresponding dimensional values can
be readily obtained using the reference scales for length (L), velocity (u0), density (r0), viscosity
(m0) and time (L/u0).
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The above time step choice is appropriate to follow the time evolution of the momentum
convection–diffusion processes resolvable in a mesh with size he, as argued by De Sampaio et
al. [9]. Indeed, Equation (63) gives for the pure convection limit, i.e. CRe��,

Dt=
he

un , (65)

whereas for pure diffusion (CRe=0) it yields

Dt=
1
6

rhe
2

m
Re. (66)

The relationship between the time step given by Equation (63), also called the intrinsic time
scale, and the modelling (filtering) of the subgrid scales was investigated in a recent paper by
Hughes [10].

On the other hand, to introduce optimal upwinding in the fluid energy equation we have to
replace the element Reynolds number in Equation (63) by the element Peclet number,

CPe=
runhe

k
RePr. (67)

Clearly, the time scales for the momentum and energy equations may differ. Furthermore,
note that the time step given by Equation (63) varies spatially according to local values of
velocity, physical properties and mesh size. Thus, if optimal upwinding is to be introduced in
both momentum and energy balances, we need to consider two distinct spatially varying time
step distributions.

We employ here an algorithm that allows each degree of freedom to advance in time
according to its own local time step, while interpolated results are periodically output at fixed
times [11]. The algorithm starts with all degrees of freedom acti6e and with variables defined
at time tn. Then, it proceeds as follows:

(a) Set element time steps for mass–velocity using the corresponding CRe and element time
steps for internal energy and pressure using the corresponding CPe.

(b) Project the element time step values onto mesh nodes, obtaining nodal time step
distributions for G. a, p̂ and ê.

(c) Choose an interpolation time step Dtint between the minimum (Dtmin) and the maximum
(Dtmax) time scales.

(d) Define the interpolation time level tint= tn+Dtint.
(e) Solve sequentially Equations (49), (43), (59) and (62) for the acti6e degrees of freedom

using the respective nodal time step distributions.
(f) Interpolate, on the time domain, the degrees of freedom whose tracked time have

exceeded tint and freeze their interpolated values at tint. These degrees of freedom are
temporarily removed from the list of acti6e variables and treated as pseudo boundary
conditions for the problem defined in terms of the remaining acti6e variables.
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(g) Are there any active variables left?
If yes
g1) Recompute the local time steps for the remaining acti6e variables and return to step
(e).
Else
g2) Output the solution at tint.
g3) Release the inacti6e (frozen) degrees of freedom.
g4) Redefine tn= tint and return to step (a).
End if

The process continues until the required analysis time interval has been covered. Note that
the extra bookkeeping needed for tracking each degree of freedom time position pays off in
computational effort, for degrees of freedom associated with larger time steps are updated less
frequently than those associated to smaller ones. The algorithm described above leads to a
weighting function adaptive method, where the local time step is adjusted according to the
local velocity, physical properties and mesh size, aiming to optimize the approximation on a
given mesh.

3.4.1. Neglecting the pressure time scale in nearly incompressible flows. The time scales
associated with pressure transients have not been considered when defining the local time
steps. In fact, we are only concerned with the time scales of the momentum and energy
transfers that occur through convection–diffusion processes. However, as the incompressible
limit is approached (M�1), pressure waves travel much faster than the flow itself. In such a
case, pressure transients occur much faster than we are able to capture and stability will
depend on the algorithm’s ability to damp the corresponding pressure errors.

For schemes that approximate pressure explicitly, ignoring the pressure time scales leads to
instability. However, that is not the case for the present method: the pressure terms in the
pressure equation (43) are approximated using a fully implicit time discretization. This permits
stability to be retained, despite neglecting the short time scales associated with fast pressure
waves.

3.5. Adapti6e remeshing

A remeshing scheme concerns only the spatial discretization. However, when dealing with
transient processes, the overall error in the solution is associated not only with the spatial
discretization, but also with the time integration of the governing equations. Thus, some form
of time step adaptation is necessary, as far as a transient analysis is concerned.

In this work, the a posteriori error estimator proposed by Zienkiewicz and Zhu [12] is used
to estimate the velocity gradient error and to guide the remeshing. The scheme is designed to
generate meshes containing a controlled number of elements, in such a way that the velocity
gradient error becomes evenly distributed. The remeshing procedure is fully automatic and
triggered during a transient analysis whenever the relative variation of the estimated error
exceeds a preset value [13].

The local time stepping algorithm is used in conjunction with the remeshing scheme. This
permits linking spatial and time step refinement through Equation (63) and naturally leads to
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a simultaneous time–space adaptive procedure. Indeed, whenever the remeshing scheme
creates some local refinement to better resolve a particular flow feature, the time step
distribution is also adapted accordingly, so that the corresponding time evolution can be
appropriately followed.

It is important to remark that although our formulation is formally O(Dt), the use of the
time–space adaptive procedure allows for the local refinement of the time step itself. As a
consequence, despite the formal first-order accuracy, our procedure can lead to better time
discretizations than methods showing a formal higher-order accuracy, but which assume a
constant time step throughout the analysis domain.

4. NUMERICAL EXAMPLES

The formulation presented in the previous sections has been applied to the analysis of some
representative internal and external flows, covering a wide range of Mach numbers. The
thermodynamic and transport properties of air were used in all examples. Sutherland’s formula
[14] was used to compute the viscosity and a constant Prandtl number of 0.72 was assumed.

4.1. Circular cylinder in cross-flow

We consider here the problem of a circular cylinder in cross-flow. This is a transient, nearly
incompressible, external flow application. The Reynolds and Mach numbers for the analysis
are based on the free-stream conditions. The cylinder diameter D is used as reference length.

Experiments show that a steady state solution, with symmetric vortices appearing behind the
cylinder, occurs up to Re=40. For laminar flows at higher Reynolds numbers, there is a
periodic shedding of vortices, forming what is called a Von Karmann vortex street [15]. The
frequency f of the periodic flow is non-dimensionalized by the Strouhal number St= f D/u0.
Hammache and Gharib [16] obtained experimentally the relation St=0.212–5.35/Re between
the Strouhal and the Reynolds numbers.

A numerical simulation for Re=100 and M=0.1 was performed. The meshes in the
beginning of the analysis typically have 2000 elements. However, as the periodic flow is
established, the number of elements in the adaptive meshes increases to about 5000 elements,
becoming nearly constant thereafter.

Figure 1 shows the periodic vortex shedding behind the cylinder. Figure 2 presents two
typical adapted meshes generated during the transient simulation. The oscillation frequency f
obtained from the numerical analysis yields a Strouhal number St=0.160, in good agreement
with the value of St=0.158 predicted by the experimental correlation [16].

4.2. Thermal stratification in a square ca6ity

Air is initially at rest and thermal equilibrium, at temperature u0=300 K and atmospheric
pressure, when the temperatures at the left and right vertical walls are suddenly modified to
uL=301.5 K and uR=298.5 K respectively. The horizontal walls are considered adiabatic and
no-slip boundary conditions are applied to all solid boundaries.
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Figure 1. Periodic formation of vortices behind a circular cylinder in cross-flow for Re=100 and
M=0.1.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 32: 51–78



NEARLY INCOMPRESSIBLE FLOWS 69

Figure 2. Typical adapted meshed generated in the simulation of the cylinder in cross-flow problem.
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Figure 3. Thermal stratification in a square cavity (GrPr=105 and Pr=0.72): (a) temperature contours;
(b) Mach number contours.
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The imposed temperature boundary conditions induce buoyancy forces and lead to a free
convection stratified flow inside the cavity. Results are parameterized by the Grashof (Gr=
r0

2�g�b6DuL3/m0
2) and Prandtl numbers. The height of the cavity is chosen as the characteristic

length L. The reference thermodynamic and transport properties are those corresponding to
the initial state.

Figure 3 shows temperature and Mach number contours for GrPr=105 and Pr=0.72, after
the steady state has been reached. The final adaptive mesh contains 2947 nodes and 5636
elements. Note that the maximum local Mach number in this analysis was as low as
1.35×10−4.

Heat transfer data is presented in the form of the Nusselt number. This is given by
Nu=q¦wL/k0Du, where q¦w is the wall heat flux. Figure 4 shows the Nusselt number distribu-
tion along the cold wall at steady state. The average value Nu obtained in our computation is
4.47936, which is close to the benchmark value [17] of 4.52188.

4.3. Compressible flow around an NACA0012 airfoil

We consider here two examples of external compressible flow around a NACA0012 airfoil. In
both cases, the reference properties and the reference velocity are those corresponding to the
free stream. The airfoil chord is chosen as the characteristic length L.

4.3.1. Transonic flow. The first example is a transonic flow with M=0.85, Re=500 and 0°
incidence. A fixed mesh, refined close to the airfoil surface, was used in this steady state
analysis. Local time steps were computed as described in Section 3.4. However, as we were

Figure 4. Thermal stratification in a square cavity (GrPr=105 and Pr=0.72): Nusselt number distribu-
tion along the cold wall.
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Figure 5. Flow around an NACA0012 airfoil with M=0.85, Re=500 and 0° incidence: fixed mesh
containing 5328 nodes and 10238 elements.

Figure 6. Flow around an NACA0012 airfoil with M=0.85, Re=500 and 0° incidence: convergence
history.
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Figure 7. Flow around an NACA0012 airfoil with M=0.85, Re=500 and 0° incidence: (a) density
contours; (b) Mach number contours.
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interested in steady state results only, the computation was allowed to proceed freely, without
resorting to time interpolation.

Mass–velocity and temperature are imposed as boundary conditions at the inflow boundary
while pressure is imposed at the outflow. At the airfoil surface, the no-slip velocity condition
is applied together with a uniform temperature corresponding to the free-stream stagnation
value.

The mesh employed is depicted in Figure 5. The minimum element size is 0.004 L. The
convergence towards the steady state solution is presented in Figure 6. Figure 7 shows the
density and Mach number contours. The friction coefficient along the chord is depicted in
Figure 8. This result is in good agreement with the friction coefficient presented by Nigro et
al. [18] and Shakib [19].

4.3.2. Supersonic flow. The second example is a supersonic flow at M=2.0, Re=106 and 10°
incidence. Mass–velocity, temperature and pressure are imposed at the supersonic inflow
boundary. The no-slip velocity condition is applied at the airfoil surface, which is assumed
adiabatic. No boundary conditions are imposed at the supersonic outflow.

In this example, we have performed a transient, time–space adaptive computation. Here, the
remeshing procedure was employed to construct meshes according to the estimated error on
velocity gradients, while local time steps were adjusted according to the resulting element sizes
and physical conditions. The time interpolation algorithm described in Section 3.4 was
employed to synchronize the computation.

The transient was run from t*=0 to t*=10. At t*=10, the computation is virtually at
steady state, with a residual of 0.001. Figure 9 shows the analysis domain and the final
adaptive mesh containing 7266 nodes and 14185 elements. The minimum element size is

Figure 8. Flow around an NACA0012 airfoil with M=0.85, Re=500 and 0° incidence: friction
coefficient along the chord.
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Figure 9. Flow around an NACA0012 airfoil with M=2, Re=106 and 0° incidence: (a) analysis
domain; (b) detail of the mesh close to the airfoil.
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Figure 10. Flow around an NACA0012 airfoil with M=2, Re=106 and 10° incidence: (a) density
contours; (b) Mach number contours.
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Figure 11. Flow around an NACA0012 airfoil with M=2, Re=106 and 10° incidence: comparison
between numerical and experimental density data [20].

0.01 L. In particular, note the refinement on the regions comprising the frontal shock and the
boundary layer. Density and Mach number contours on the vicinity of the airfoil are shown
in Figure 10. Figure 11 presents a comparison between the computed density field and the
corresponding experimental data obtained by Allègre et al. [20]. The comparison is made on
the straight line AB, shown in Figure 11, which runs through the shock into the rarefaction
zone. Note the good agreement between the numerical and the experimental density data.

5. CONCLUDING REMARKS

A new finite element formulation designed for the analysis of both compressible and nearly
incompressible fluid dynamics has been presented. The method has shown good performance
in the solution of some representative internal and external flows, ranging from the subsonic
to the supersonic regime.

In particular, it has been possible to simulate some very small Mach number flows, without
resorting to the incompressible model, and thus retaining the state equation of the fluid. This
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is an attractive feature of the present formulation, as we intend to use it for the analysis of
two-phase steam/water flows, where preserving the fluid thermodynamic relations is of
foremost importance.

The numerical methods presented herein for two-dimensional laminar flows naturally extend
for the analysis of three-dimensional problems and for the computation of turbulent flows with
the Reynolds-averaged equations.
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